نیلس هنریک آبل (۱۸۰۲-۱۸۲۹)یکی از پیشروترین ریاضیدانان قرن نوزدهم
و احتمالا بزرگترین نابغه برخواسته ازکشورهای اسکاندیناوی است.
آبل همراه با معاصرانش گاوس و کوشی یکی از پیشگامان ابداع ریاضیات
نوین بوده است که مشخصه آن تأکید بر اثبات دقیق است . زندگیش آمیزه
تندی بود ، از خوشبینی شوخ طبعانه در هنگامی که تحت فشار فقر و
گمنامی قرار داشت و در قبال دستاوردهای درخشان ، برجسته و فراوانش
در عنفوان جوانی متواضع بود و در رویارویی با مرگی زودرس به آرامی تسلیم بود .
آبل یکی از شش فرزند کشیش فقیری در یکی از روستاهای حومه شهر فینوی کشور سردسیر نروژ و متولد سال ۱۸۰۲ میلادی بود. در سال ۱۸۱۵ وارد مدرسه کلیسای جامع کریستینا (اسلو امروزی و پایتخت نروژ) شد. بیش از شانزده سال نداشت که استعداد عظیم او آشکار شد و مورد تشویق یکی از معلمینش قرار گرفت. چیزی نگذشت که به خواندن و فهمیدن کارهای بزرگانی چون نیوتن، اویلر و لاگرانژ پرداخت. او این نکته را به عنوان نتیجه مطالعات گستردهاش در یکی از یادداشتهای ریاضیاش نوشت: «به نظر من اگر کسی بخواهد در ریاضی پیشرفت کند، باید به مطالعه آثار استادان و نه شاگردان بپردازد». هجده ساله بود که پدرش درگذشت و خانواده را در تنگدستی بر جای گذاشت؛ اما یک مقرری ناچیز که از پدر به جا مانده بود، اجازه میداد تا آبل وارد دانشگاه کریستینا شود. آنها با کمک دوستان و همسایگان امرار معاش میکردند و با کمک مالی چند تن از استادان و مقرری اندک باز مانده از پدر، این پسر توانست درسال ۱۸۲۱ وارد دانشگاه اسلو شود.
نخستین پژوهشهای او در حل مسئله کلاسیک منحنی همزمان به وسیله معادله انتگرالی درسال ۱۸۲۳ منتشر شد. این کارش، اولین جواب معادلهای از این نوع بود و راهگشایی برای پیشرفت وسیع معادلات انتگرالی در اواخر قرن نوزدهم و اوایل قرن بیستم به شمار میرفت. اولین کار برجسته او اثبات عدم امکان حل معادلات درجه پنجم به وسیله رادیکال بود. این تحقیق در سال ۱۸۲۴ برای اولین بار منتشر شد و جزئیات بیشتری از آن بعدها در سال ۱۸۲۶ در مجله کرل منتشر گردید. او در سال ۱۸۲۵ به آلمان رفت و در حدود ۶ ماه در برلین اقامت کرد. او ثابت کرد که معادله درجه پنجم:
ax۵ + bx۴ + cx۳ + dx۲ + ex + f =۰
را در حالت کلی نمیتوان مانند معادلات درجه پائینتر برحسب رادیکال حل کرد و به این ترتیب مسئلهای را حل کرد که ریاضیدانان را ۳۰۰ سال گرفتار کرده بود. او اثباتش را به خرج خود در جزوه کوچکی منتشر نمود.
رشد علمی آبل از نروژ فراتر رفت و تصمیم گرفت تا به دیدار از فرانسه و آلمان بـپردازد. با حمایت دوستان و استادانش، تقاضایی به دولت داد که پس از تشریفات و تاخیرهای معمول، بورسی برای یک مسافرت طولانی علمی درقاره اروپا دریافت کرد. سال اول مسافرت خارجی خود را بیشتر دربرلین گذراند و در آنجا با یکی از ریاضیدان آماتور، جوان و پرشوری به نام آگوست لئوپولد کرل که بعدها دوست نزدیک، مشاور و حامی او شد، آشنا گردید. هنریک آبل، کرل را به انتشار مجله مشهورش به نام مجله «ریاضیات محض و کاربردی» برانگیخت. این اولین مجله ادواری جهان بود که به طور کامل به پژوهشهای ریاضی اختصاصی داشت. انتشار این مجله ریاضی، آبل را دلگرم کرد تا دست به اقدامی برای رسیدن به موفقیت بزند. بنابراین از برلین به فرایبورگ رفت و در آنجا به پژوهش در مورد نظریه توابع جبری پرداخت. در شهر برلین، آبل تحت تاثیر مکتب فکری جدیدی قرار گرفت که توسط گاوس و کوشی رهبری میشد و به جای این که بر محاسبه های طولانی تکیه داشته باشد، بیشتر بر استـنـتاج دقیق تاکید داشت. آبل جزوه مربوط به معادلات درجه پنجم خود را به امید آن که به مثابه یک جواز عبور علمی به کار رود، برای گاوس به گوتین فرستاد ولی گاوس به دلیلی که روشن نیست بدون آن که به آن حتی نظری بیاندازد، آن را به کناری نهاد؛ زیرا سی سال بعد از مرگش آن را سر بسته در بین اوراق و یادداشتهایش یافتند. با کمال تاسف برای هردو نفر، آبل احساس کرد که در مورد او کارشکنی شده است و تصمیم گرفت بدون ملاقات با گاوس به پاریس برود.
در سال ۱۸۲۶ به پاریس رفت و در طول اقامت ده ماههاش، ریاضیدانان برجسته فرانسوی را ملاقات کرد؛ اما استقبال آنها از کارها و پژوهشهای او بسیار ناچیز بود. فروتنی و تواضع او باعث شد تا او نتواند به طور گسترده تحقیقات خود را ارائه کند و به علت بی پولی و نداشتن آزادی عمل نتوانست به موفقیتی دست یابد. اندکی پس از ورودش اثر برجسته خود را تحت عنوان یادداشتی درباره یک خاصیت کلی دستة وسیعی از توابع متعالی (که آن را شاهکار خود دانست) به پایان رساند. این اثر شامل کشفی در مورد انتگرال توابع جبری است که امروزه به نام قضیه آبل مشهور است و پایه ای برای نظریه بعدی اش درباره انتگرال آبل و قسمت زیادی ازهندسه جبری به شمار می رود. در پاریس با کوشی، لژاندر، دیریکله و دیگران ملاقات کرد ولی این ملاقاتها سرسری بود و او آن طور که باید، شناخته نشد. وی درآن زمان چندین مقاله مهم درمجله کرل منتشر کرده بود ولی فرانسویان کمتر از وجود این مجله ادواری مطلع بودند و آبل خجالتی تر از آن بود که با افراد تازه آشنا درباره کارهای خود صحبت کند. گفته میشود که «از آبل آن قدر کار به جا مانده است که ریاضیدانان را تا ۵۰۰ سال مشغول دارد».
ژاکوبی قضیه آبل را بزرگترین کشف حساب انتگرال در قرن نوزدهم توصیف کرد. آبل دستنوشته خود را به فرهنگستان فرانسه ارائه کرد. وی امیدوار بود که این اثر بتواند توجه ریاضیدانان فرانسه را به او جلب کند ولی او بیهوده صبر کرد تا کیسه اش خالی شد و مجبور شد به برلین بازگردد. جریانی که اتفاق افتاد از این قرار بود: «دستنوشته مزبور برای بررسی به کوشی و لژاندر داده شد. کوشی آن را به خانه برد و در جای نامربوطی گذاشت و آن را به کلی فراموش کرد و تا سال ۱۸۴۱ اقدام به انتشار این اثر نشد و در آن زمان نیز قبل از آن که نمونههای چاپی آن خوانده شود، گم شد. بالاخره نسخة اصلی مقاله در سال ۱۹۵۲ از فلورانس سردرآورد!
آبل در برلین اولین مقاله انقلابی خود را در مورد توابع بیضوی, موضوعی که سالها روی آن کار کرده بود، به پایان رساند و درحالی که سخت مقروض شده بود، به نروژ بازگشت.
آبل انتظار داشت تا در بازگشت به استادی دانشگاه منصوب شود، ولی باز هم به آرزویش نرسید. بنابراین، با تدریس خصوصی به امرار معاش پرداخت و مدت کوتاهی نیز به عنوان معلم کمکی دریک موسسه به کار گمارده شد. در این دوران به طور مداوم مشغول کار بود و اغلب اوقات روی نظریه توابع بیضوی که آن را به عنوان عکس انتگرالهای بیضوی کشف کرده بود، کار میکرد (به مطلب «انـتگرالهای بـیضوی» در آرشیو موضوعی همین وبلاگ مراجعه فرمائید تا قسمتی از کار بزرگ آبل را دریابید). این نظریه به سرعت جای خود را به عنوان یکی از رشته های اصلی آنالیز قرن نوزدهم و همراه با کاربردهای فراوان در نظریه اعداد, فیزیک ریاضی و هندسه جبری باز کرد. در این دوران، شهرت آبل به همه مراکز ریاضی اروپا رسید و آبل در زمره بزرگان ریاضی جهان قرار گرفت؛ اما وی به علت گوشه گیری اش از این ماجرا بی خبر ماند.
در آن زمان، به جز کار سترگ گاوس بر روی سریهای فوق هندسی، کمتر اثباتی در آنالیز بود که حتی امروز نیز معتبر به شمار میآید. همان طور که آبل درنامه ای به یکی از دوستانش تشریح میکند، اگر ساده ترین حالات را کنار بگذاریم، درتمام ریاضیات حتی یک سری بینهایت هم نمیتوان یافت که مجموع آن دقیقا تعیین شده باشد. به عبارت دیگر، مهمترین بخشهای ریاضیات فاقد مبنا هستند. در این دوران، وی نتیجه مطالعات کلاسیک خود را در مورد سریهای دو جملهای نوشت و در آن، نظریه عمومی همگرایی را بنا نهاد و اولین اثبات قانع کننده از صحت بسط این سری را ارائه کرد.
در طول مسافرتهایش در اروپا به بـیماری سل مبتلا شد و در اوایل سال ۱۸۲۹ بـیماری اش چنان پیشروی کرد که او را از کار کردن باز داشت. در نهایت، در بهار همان سال و در ششم آوریل ۱۸۲۹ در سن بیست و شش سالگی درگذشت. او پس از اواریست گالوا دومین جوانمرگ عرصهی ریاضی به شمار می رود. در آوریل ۱۸۲۹ سمت استادی برای او در دانشگاه برلین پیشنهاد شد ولی نامه حاوی این مطلب دو روز بعد از مرگ او به مقصد رسید! کمی پس از مرگش، آگوست کرل در یادنامه ای به طعنه نوشت که تلاشهای آبل موفقیت آمیز بوده است و آبل باید به کرسی ریاضی دانشگاه برلین منصوب شود!
کرل در مجله خود آبل را چنین مورد ستایش قرار میدهد: «تمام آثار او حاوی نشانههایی از نبوغ و قدرت فکری حیرتانگیز است. میتوان گفت که او میتوانست با قدرتی مقاومتناپذیر از همه موانع بگذرد و به عمق مسئله نفوذ کند. وجه تمایز او، خلوص و نجابت ذاتی وی و نیز تواضع کم نظیری بود که ارزش او را به میزان نبوغ غیر عادیاش بالا میبرد».
آبل کارهای مهمی را در زمینه جبر انجام داد. آبل پیشقراول توسعههای اساسی نظریه توابع جبری است و مهمترین کار او نیز همین بود. از پایهگذاران جبر مدرن است. گروه جابجاییپذیر (عبارت آبلین) را به افتخار وی، گروه آبلی هم مینامند. او ثابت کرد که معادلات چند جمله ای با درجه بالاتر از چهار در حالت کلی با استفاده از رادیکالها حل پذیر نیستند.
ریاضیدانان برای یادآوری مردان بزرگ ریاضی روشهای مخصوص به خود دارند و با گفتن معادله انتگرالی آبل، انتگرالها و توابع آبل، گروههای آبلی، سری آبل، فرمول مجموع جزئی آبل، قضیه حد آبل در نظریه سریهای توانی و جمع پذیری آبلی از او یاد می کنند. کمتر کسی است که اسمش به این همه موضوع و قضیه در ریاضیات نوین پیوند خورده باشد و آنچه وی در دوران یک زندگی عادی میتوانست انجام دهد، فراتر از حد ادراک بشری است.